Connectivity and distributions of three dimensional tilings

Caroline J. Klivans
Brown University

Joint work with Juliana Freire, Pedro Milet and Nicolau Saldanha

Three Dimensional Tilings

Domino tilings of cubiculated Regions R:

- cubical complexes embedded as a finite polyhedron in \mathbb{R}^N
- connected oriented topological manifolds

Dimer covers of dual graph R^*

Q: Understand the space of tilings. What does a typical 3 dimensional tiling look like?

Focus: Connectivity by local moves. How and when can we move from one tiling to another?

Flip: Remove two adjacent parallel dominoes and place them back rotated within $2 \times 2 \times 1$ block.

Theorem: In two dimensions, any two tilings of a simply connected region are flip connected.

Not the case in 3d:

Two tilings of the $3 \times 3 \times 2$ box with no flips.

 $3 \times 3 \times 2$ box:

Number of tilings: 229

Connected components: 3

Sizes: 227, 1, 1

 $4 \times 4 \times 4$ box:

Number of tilings: 5,051,532,105

Connected components: 93

Sizes: 4,412,646,453

 $2 \times 310, 185, 960$

 $2 \times 8, 237, 514$

 $2 \times 718,308$

 $2 \times 283,044$

 $6 \times 2,576$

 24×618

 24×236

 6×4

 24×1

Trit: Remove and replace 3 dominoes, one parallel to each axis inside a $2 \times 2 \times 2$ box.

Question: Are tilings of three dimensional regions connected by flips and trits?

Question: Are all tilings of three dimensional regions connected by flips and trits?

In general, no.

Examples include tilings of:

- Cylinders: $\mathcal{D} \times [0, n]$
- Tori: \mathbb{R}^3/\mathcal{L} , $\mathcal{L} = 8\mathbb{Z}^3$.

Open:

• Boxes: $[0, L] \times [0, M] \times [0, N]$

Topological invariants

Two topological invariants: Flux, Twist.

Need notion of refinements.

Theorem (FKMS '16)

For two tilings t_0 and t_1 of R:

- There exists a sequence of flips and trits connecting refinements of t_0 and t_1 if and only if $Flux(t_0) = Flux(t_1)$.
- There exists a sequence of flips connecting refinements of t_0 and t_1 if and only if $Flux(t_0) = Flux(t_1)$ and $Twist(t_0) = Twist(t_1)$.

Refinement

- R is refined by decomposing each cube into $5 \times 5 \times 5$ smaller cubes.
- t is refined by decomposing each domino into $5 \times 5 \times 5$ smaller dominoes, each parallel to the original.

Proposition

If t_0 and t_1 are connected by flips (resp. flips and trits) then their refinements are also connected by flips (resp. flips and trits).

(Converse false, examples in the $4 \times 4 \times 4$ box)

Flux - difference of tilings

For two tilings t_0, t_1

• $t_1 - t_0 := \text{union of tiles (with orientation of } t_0 \text{ reversed)}.$

Yields a system of cycles. (Ignore trivial 2-cycle.)

Homologically: $t_1 - t_0 \in Z_1(R^*; \mathbb{Z})$

Topological Invariant - Flux

Fix a base tiling t_{\oplus} .

$$Flux(t) := [t - t_{\oplus}] \in H_1(R^*; \mathbb{Z})$$

flip \leadsto boundary of a square

trit \rightsquigarrow boundary of 3 squares

Proposition

If t_0 and t_1 differ by flips and trits then $Flux(t_0) = Flux(t_1)$.

Surface

A (discrete) Seifert surface for a pair t_0, t_1 is a connected embedded oriented topological surface S (mapped continuously and injectively into R^*) with boundary $t_0 - t_1$.

Proposition

 t_0, t_1 if $Flux(t_0) = Flux(t_1)$ then there exists a discrete Seifert surface in some refinement of the pair.

flux through a surface

$$\varphi(v;t;S) = c(v) \cdot \begin{cases} +1, & \text{end above } S \\ 0, & \text{end on } S \end{cases} \qquad \phi(t;S) = \sum_{v} \varphi(v;t;S)$$

$$-1, & \text{end below } S$$

c(v) is +1 if v is a black tile and -1 if v is a white tile.

Theorem

For S an embedded discrete surface with $\partial(S) = \emptyset$,

if $S = \partial(\text{manifold})$ then $\phi(t; S) = 0$.

Flux vs. flux

• $\phi(t;S)$ really only depends on the homology class of the surface.

Proposition

If $\operatorname{Flux}(t_0) = \operatorname{Flux}(t_1)$ then $\phi(t_0; a) = \phi(t_1; a)$ for all $a \in H_2(R; \mathbb{Z})$.

Define the *modulus* of a tiling:

$$m := \mu(\operatorname{Flux}(t)) := \gcd_{a \in H_2} \phi(t; a)$$

(Twist is well-defined up to the modulus.)

Twist

Fix a base tiling t_{\oplus} :

$$Twist(t) := \phi(t; t - t_{\oplus}) \in \mathbb{Z}/m\mathbb{Z}$$

Proposition

If $t_0 \rightsquigarrow \text{trit} \rightsquigarrow t_1 \text{ then}$

 $Flux(t_0) = Flux(t_1)$ and $Twist(t_0) = Twist(t_1) \pm 1$

- Intuitively, the twist records how "twisted" a tiling is by trits.
- If Flux(t) = 0 then $Twist(t) \in \mathbb{Z}$. (Boxes)

Main Theorem

Theorem

For two tilings t_0 and t_1 of R:

- There exists a sequence of flips and trits connecting refinements of t_0 and t_1 if and only if $Flux(t_0) = Flux(t_1)$.
- There exists a sequence of flips connecting refinements of t_0 and t_1 if and only if $Flux(t_0) = Flux(t_1)$ and $Twist(t_0) = Twist(t_1)$.
- Proof: height functions, winding forms.

Questions

Q: How often are refinements necessary?

Conjecture

For $N \in 2\mathbb{Z}$, consider the cubical torus $R = \mathbb{Z}^3/(N \cdot \mathbb{Z}^3)$. Select two tilings t_0 and t_1 of R independently and uniformly at random.

- A: t_0 and t_1 are connected by flips;
- $B: \operatorname{Flux}(t_0) = \operatorname{Flux}(t_1) \text{ and } \operatorname{Twist}(t_0) = \operatorname{Twist}(t_1).$

Then

$$\lim_{N \to \infty} \operatorname{Prob}[A|B] = 1.$$

Open: Are boxes flip and trit connected?

Stronger: Region inside a box?

Distribution of Twist

Q: How is the twist distributed?

- Normally distributed?
- Giant component?

Data of the $4 \times 4 \times 4$ box.